Surrogate modeling of waveform response using singular value decomposition and Bayesian optimization

نویسندگان

چکیده

In the early stage of vehicle development, it is required to implement a target cascading study by solving inverse problems. However, simulation costs dynamics predict transient responses and frequency make difficult. The purpose this paper propose method construct surrogate model which can waveform solution Bayesian optimization using posterior distribution trained responses. Replacement expensive more economical enhance study. paper, we vectorized training data matrix from be evaluated CAE simulations based on Design Experiments. proposed method, supervised unsupervised learning are introduced. singular value decomposition used as feature extraction (Unsupervised learning) applied data. Obtained vectors modes represent Gaussian Process introduced regression (Supervised each weight obtained projection modes. response predicted superposition prediction values By Process, Expected Improvement function in minimize cost mean waveform. feasibility illustrated an application for suspension design problem impact harshness phenomenon.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

پیشنهاد روش جدیدی برای محاسبه polynomial singular value decomposition ) psvd )

در این پایان نامه به معرفی روشهای مختلف محاسبه psvd می پردازیم. بخشی از این روشها به بررسی روشهای مختلف محاسبه psvd در مقالات مطالعه شده می پردازد که می توان به محاسبهpsvd با استفاده از الگوریتمهای pqrd و pevd و sbr2 و محاسبه psvd براساس تکنیک kogbetliantz و روش پارامتریک برای محاسبه psvd اشاره نمود. بخش بعدی نیز به بررسی روشهای مستقیم پیشنهادی محاسبه psvd برای ماتریسهای 2×2و2× n و n×2 و 3× n و...

15 صفحه اول

Design Optimization Problem Reformulation Using Singular Value Decomposition

This paper presents a design optimization problem reformulation method based on Singular Value Decomposition (SVD), dimensionality reduction, and unsupervised clustering. The method calculates linear approximations of the associative patterns of symbol co-occurrences in a design problem representation to infer induced interaction/coupling strengths between variables and constraints. Unsupervise...

متن کامل

Modeling Electromechanical Overcurrent Relays Using Singular Value Decomposition

This paper presents a practical and effective novel approach to curve fit electromechanical EM overcurrent OC relay characteristics. Based on singular value decomposition SVD , the curves are fitted with equation in state space under modal coordinates. The relationships between transfer function and Markov parameters are adopted in this research to represent the characteristic curves of EM OC r...

متن کامل

Singular Value Decomposition (SVD) and Generalized Singular Value Decomposition (GSVD)

The singular value decomposition (SVD) is a generalization of the eigen-decomposition which can be used to analyze rectangular matrices (the eigen-decomposition is definedonly for squaredmatrices). By analogy with the eigen-decomposition, which decomposes a matrix into two simple matrices, the main idea of the SVD is to decompose a rectangular matrix into three simple matrices: Two orthogonal m...

متن کامل

Feature Extraction of Visual Evoked Potentials Using Wavelet Transform and Singular Value Decomposition

Introduction: Brain visual evoked potential (VEP) signals are commonly known to be accompanied by high levels of background noise typically from the spontaneous background brain activity of electroencephalography (EEG) signals. Material and Methods: A model based on dyadic filter bank, discrete wavelet transform (DWT), and singular value decomposition (SVD) was developed to analyze the raw data...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Advanced Mechanical Design Systems and Manufacturing

سال: 2021

ISSN: ['1881-3054']

DOI: https://doi.org/10.1299/jamdsm.2021jamdsm0018